EDMONTON 2018 to _____

CITE Edmonton 2018

complex world

CLEAR SOLUTIONS™

Resilient Infrastructure **Planning** Risk-Based **A**nalysis **Process**

High Probability – Low Consequence

Low Probability – High Consequence

Defining Risk

Capacity and Demand

Asset Adequacy

US Army Corps of Engineering EC 1110-2-6062

\$Risk = PUP x \$Consequences

Consider a Culvert

Two Failure Modes

Corrosion Simulation

Rebar Section Loss Simulations

Predicted Asset Reliability

Both Material Degradation and Design Event Contribute to Pup

Consequences of Failure?

- Direct Consequences replace culvert, embankment, pavement.
- Addition detour based travel costs: 465
 AADT, 1% Growth, 460km detour, 15 day replacement period
- In this example Consequences = \$3.225 m

\$Risk in year $1 = 0.0333 \times $3.225 \text{ m} = 130K over 30 years $0.64 \times $3.225 \text{m} = 2 m

Life Cycle Cost for Replacement

2	Return Period	Initial Cost		Present Value Cost Replacement in 60 Years ¹		Present Value Cost for 100 Year Analysis Period	
(50	\$	621,000	\$	63,000	\$	684,000
2)	100	\$	689,000	\$	70,000	\$	759,000
	200	\$	757,000	\$	77,000	\$	834,000
	500	\$	847,000	\$	86,000	\$	933,000
	1000	\$	915,000	\$	93,000	\$	1,008,000

What Should Be Done?

- What Storm Event would be designed for?
- What can be economically justified?

LCCA!

Multi-strategy LCCA Informs Design Decision

Figure 5 – PV Asset Strategy Costs Compared to PV \$Risk at Different Return Periods

Add future climate change

Using Multiple Climate Models

And Monte Carlo Simulations to produce Probability of an event return period

Change in Event Probability as Climate Evolves

LCCA informs Asset Managers

Summary

- Requires monetizing \$Risk
- Justifies Capital Expenditure
- Applicable to Geo-hazards, Avalanches and Seismic events
- Forms the Basis for LCCA Comparisons Across a Portfolio of Assets